

Autonomic investigation in children which test and when

Maria Miszczak-Knecht

The Children's Memorial Health Institute, Warsaw, Poland

15% of children and adolescent experience at least 1 syncope

Reason for syncope in children

75% autonomic syncope10% cardiac syncope8-17% psychogenic or unexplained

Personal and family history Physical examination ECG

Exclude possible arrhythmic reason

Autonomic syncope

Types of autonomic mediated syncope

Breath-holding spells

Blood injury phobia

Inappropriate tachycardia

Postural tachycardia syndrome

Vaso-vagal syncope

Main autonomic reflex regulating circulatory

Type of reflex	Receptors	Localisation of receptors	Function	Effect
baroreceptors	mechanoreceptors	Aortic arch, pulmonary artery Coronary artery Zatoki szyjnej	↑ parasymaptetic ↓sympatetic	↓HR ↓BP
Bainbridge	mechanoreceptors	Vena cavie and pulmonary vein	个sympatetic	Heart rate regulation during exercise
Bezold-Jarisch	Mechano and chemoreceptors	Left ventricle	↑parasympatetic ↓sympatetic	↓HR ↓BP
Arterial chemoreceptors	Chemoreceptors (O2, CO2, pH)	Aortic arch, right subclavian and carotid artery	↑sympatetic ↓parasympatetic	个HR 个BP Respiratory regulation
Central nuer chemoreceptors	Chemoreceptors C)2, pH	Medulla	↑↑↑ sympathetic ↓parasympatetic	个HR 个BP Respiratory regulation
Diving reflex	Thermoreceptors, chemoreceptors	Facial skin, rdzeń przedłużony	↑sympatetic ↓parasympatetic	↓HR 个BP

Tests for autonomic investigation

- 1. Orthostatic (Schellong) and modify Schellong test
- 2. Head up Tilt test
- 3. Valsalva maneuver
- 4. Cold pressor test
- 5. Handgrip test
- 6. Thermoregulatory sweat test
- 7. Supine and upright epinefrine and norepinefirne level
- 8. Carotid massage
- 9. Diving reflex

2015 Heart Rhythm Society Expert Consensus Statement on the Diagnosis and Treatment of Postural Tachycardia Syndrome, Inappropriate Sinus Tachycardia, and Vasovagal Syncope

Heart Rhythm, Vol 12, No 6, June 2015

Recommendations—POTS and Vasovagal Syncope in the Young					
	Class	Level			
Pediatric patients presenting with suspected vasovagal syncope or POTS should undergo a detailed medical history review and physical examination and undergo a 12-lead ECG.	I	E			
Pediatric patients with suspected POTS should undergo orthostatic testing.		E			
lilt-table testing is reasonable for highly selected pediatric patients with suspected vasovagal syncope.	IIa	C			
It seems reasonable to treat selected pediatric patients with vasovagal syncope with midodrine.		B-R			
It seems reasonable to treat pediatric patients with vasovagal syncope or POTS with interventions that are recommended for adults with these disorders.		E			

Different mechanisms leading to OI Mechanisms are not fully understand Lack of systematic investigations

For majority of children with OI Personal history is crucial for diagnosis Non-pharmacological therapy causes symptoms disappear

- 2. High sensitivity and specificity
- 3. High repeatability

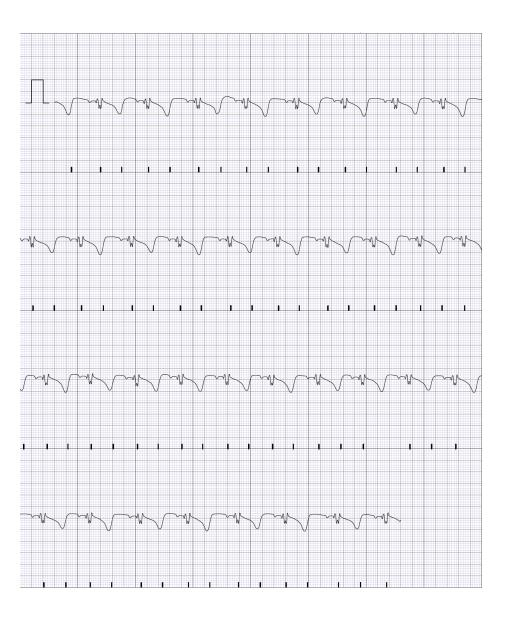
1.

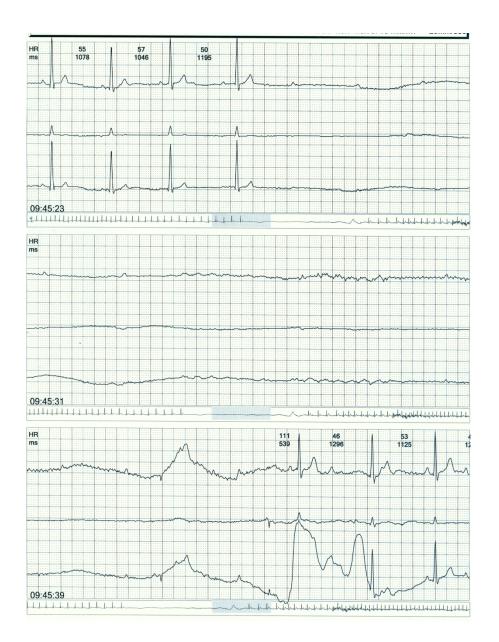
Breath-holding spells

Usually occurs between 6 months of age and 5 years (peak 12-24 months)

There is severe bradycardia and/or asystole

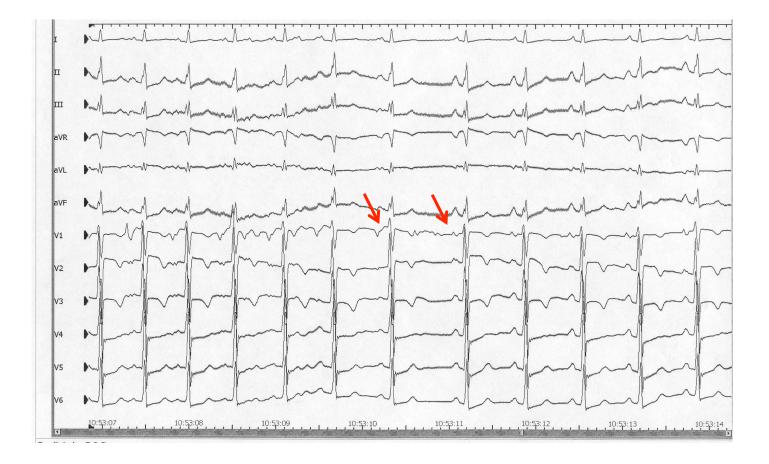
Infantile form of vaso-vagal syncope


Cyanotic-loud cry followed by apnea, may be associated with myoclonic movements


Pallid breath holding spells/reflex anoxic seizuresbrought on by injury or pain. In contrast to cyanotic no crying

ECG from chest 10 month old boy with LQTS and Fallot

Blood injury phobia


13 years old girl

Inappropriate sinus tachycardia is define as sinus heart rate >100bpm (with 24-hrs monitoring >90 bpm-ADULTS!) and is associated with distressed symptoms

Inappropriate Sinus Tachycardia -increased sinus node automaticity -increased beta-adrenergic activity -decreased parasympatetic activity Medical history and physical exam focus on -possible cause of sinus tachycardia -psychological triggers -panic attacks

The standard 12 – leads ECG and 24-Holter monitoring -proofed the diagnosis -exclude FAT

Autonomic test: HR response to deep breathing, Valsava maneuvers, cold water test, HRV have unproven usefulness

Postural tachycardia syndrome: frequent symptoms occur with standing: lightheadedness, palpitations, tremor, weakness, exercise intolerance and fatigue. Increased >40 beats /min when changing positions with absence of orthostatic hypotension

Postural Tachycardia Syndrome-physiology

- -peripheral autonomic denervation
- -hypovolemia
- -hyperadrenergic POTS

-deconditioning

These mechanism often co-exist

Detailed history:

- -symptoms chronicity
- -possible causes
- -potential triggers (diet and exercise)
- -symptoms of autonomic neuropathy (feeling full, bloating, nausea, sweating)
- -family history of sudden cardiac death <50 yr

-comorbidity: infection, diabetes, hypothyreosis, side effects from cancer treatment, autoimmun disease, Ehlers-Danlos

Orthostatic test

10-15 min rest in supine position RR and HR measure 1,2, 3 and 10 min after upright position

Positive: HR increased >40bpm (POTS) RR decreased within 3 min s≥20mmHg d≥10mmHg (orthostatic hypotonia)

IF ORTHOSTATIC TEST IS NORMAL BUT CLINICAL SYMPTOMS MAKE POTS VERY POSSIBLE HEAD UP TILT TEST IS HELPFULL **VV syncope** is a syncope syndrome that usually occurs with upright posture held for more than 30 sec or with exposure to emotional stress, pain, worm, nausea and pallor. It is associated with hypotension and relative bradycardia, and followed by fatigue

Vaso-vagal syncope- physiology -periphelal venous pooling -reflex from mechanoreceptors

Vaso-vagal syncope

Detailed history:

-predisposing situations (prolonged standing 2-3 min)
-prodromal symptoms (diaphoresis, warmth, flushing, nausea)

-physical signs

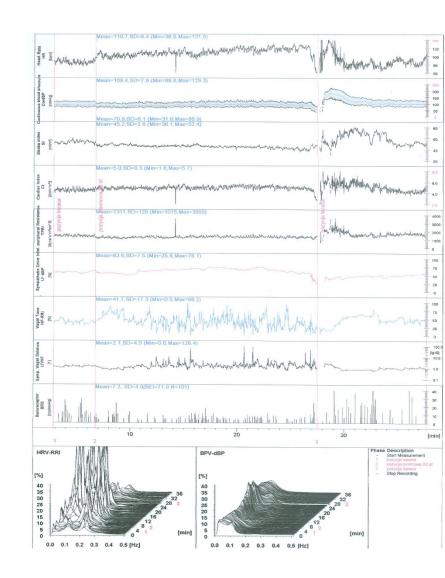
-recovery time (1-2 min, but patient could be tired for minutes to hours)

Head UpTilt Test

Heart Rhythm recomendation for evaluation of vv syncope

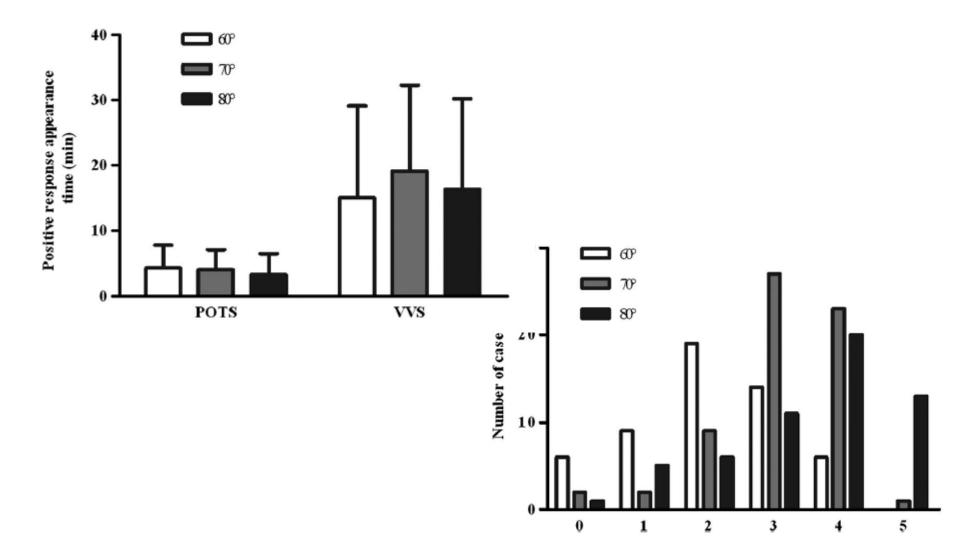
Recommendation	COR	LOE
Tilt table testing can be useful for the investigation	lla	B-NR
of patients with suspected vasovagal syncope who		
lack a confident diagnosis after initial assessment.		
Tilt table testing is reasonable for distinguishing	lla	B-NR
convulsive syncope from epilepsy; to establish		
a diagnosis of pseudosyncope; and in patients		
with suspected vasovagal syncope but without		
clear diagnostic features.		
Tilt table testing is not recommended for predicting	III	B-R
the response to specific medical treatments		
for vasovagal syncope.		
Implantable loop recorders can be useful in the	lla	B-R
investigation of older patients with infrequently		
recurrent and troublesome syncope who lack a		
clear diagnosis and are at low risk of a fatal outcome.		

Head Up Tilt Test

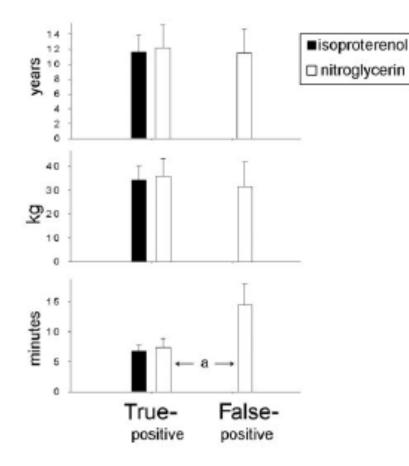

Used for children older than 6 yrs

HUTT has not been prospectivly validated

There is no ideal protocol


With increasing sensitivity there is decrease in specyfity

Most labs used 70 ° for 20 min

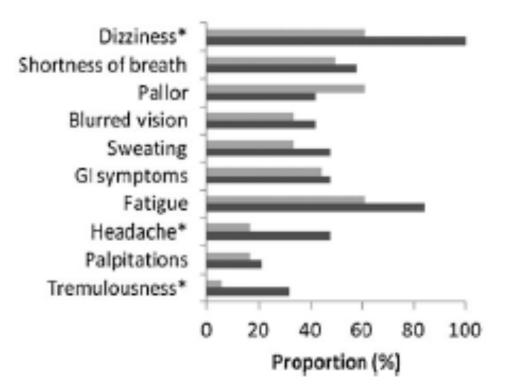

Tilt angles and positive response of head-up tilt test in children with orthostatic intolerance

Jing Lin,¹ Yuli Wang,¹ Todd Ochs,² Chaoshu Tang,^{3,4} Junbao Du,¹ Hongfang Jin,¹

Provocation of Neurocardiogenic Syncope During Head-up Tilt Testing in Children: Comparison Between Isoproterenol and Nitroglycerin

Antonios P. Vlahos, MD^a, Meropi Tzoufi, MD^a, Christos S. Katsouras, MD^b, Theodora Barka, RN^b, Irene Sionti, MD^c, Lampros K. Michalis, MD^b, Antigoni Siamopoulou, MD^a, Theofilos M. Kolettis, MD^b

Pediatrics 2007


When others autonomic tests should be done?

-diagnosis is uncertain-symptoms persists

Clinical features of hyperadrenergic postural tachycardia syndrome in children

Qingyou Zhang,1* Xia Chen,2* Jiawei Li1 and Junbao Du1

¹Department of Pediatrics, Peking University First Hospital, Beijing, and ²Department of Pediatrics, Langfang Municipal People's Hospital, Langfang, Hebei, China

Pediatrics International, 2014

Clinical features of hyperadrenergic postural tachycardia syndrome in children

Qingyou Zhang,1* Xia Chen,2* Jiawei Li1 and Junbao Du1

¹Department of Pediatrics, Peking University First Hospital, Beijing, and ²Department of Pediatrics, Langfang Municipal People's Hospital, Langfang, Hebei, China

Items	Hyperadrenergic	POTS alone	Р
	POTS $(n = 19)$	(n = 18)	
Age (years)	11.47 ± 2.06	10.61 ± 2.55	0.264
Sex ratio (M/F)	7/12	7/11	0.140
BMI, kg/m ²	19.39 ± 3.78	18.13 ± 3.72	0.316
Supine SBP (mmHg)	102.44 ± 9.05	97.89 ± 8.10	0.121
Supine DBP (mmHg)	57.28 ± 7.71	56.22 ± 8.29	0.695
Supine HR (b.p.m.)	73.78 ± 10.15	73.78 ± 10.55	1.000
Standing SBP (mmHg)	119.39 ± 8.66	105.50 ± 7.91	0.000
Standing DBP (mmHg)	66.67 ± 6.25	64.89 ± 5.45	0.370
Standing HR (b.p.m.)	127.47 ± 13.07	117.94 ± 13.19	0.034
ΔHR (b.p.m.)	54.05 ± 13.51	44.16 ± 12.54	0.027
Standing serum norepinephrine (pg/mL)	961.61 ± 343.07	420.81 ± 145.34	0.000

Pediatrics International, 2014

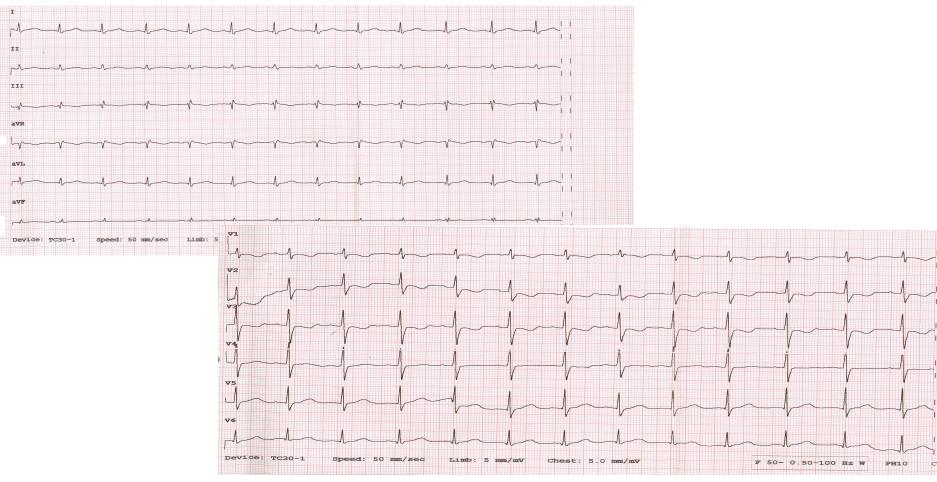
When we suspect hypovolemic...

Urinary sodium exertion

<124 mmol/24 hrs is suitable for salt supplement

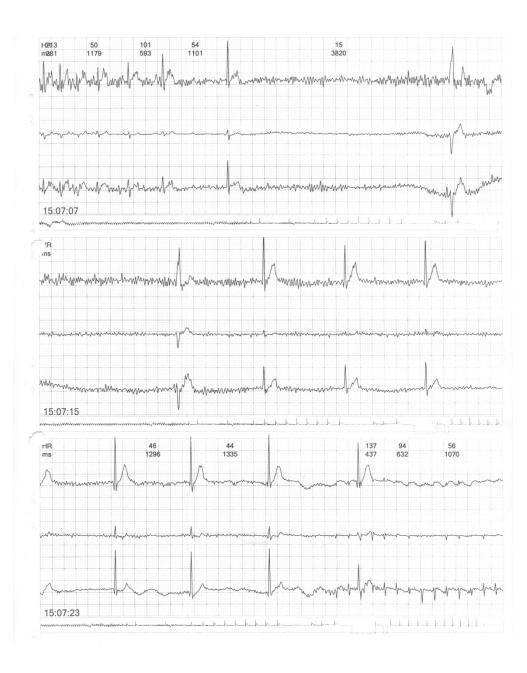
B.G.

Syncope since 2 yr Constipation Defecation often with crying and syncope Any manouvers in anal region – crying and syncope Hypotherosis

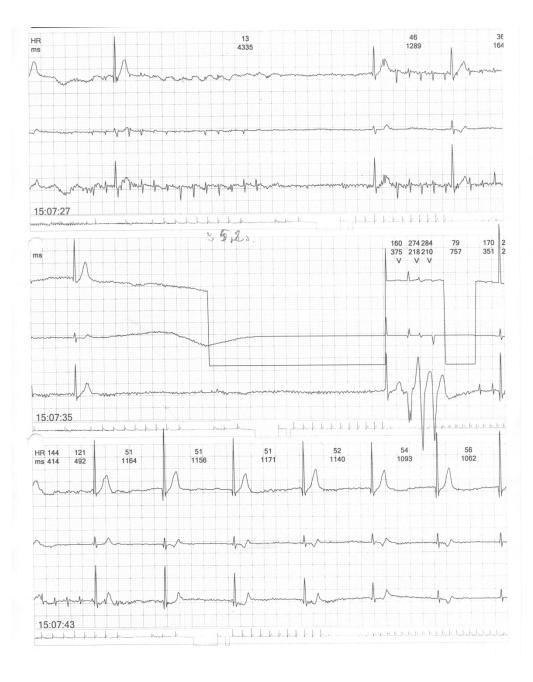

B.G

Neurological Department

- EEG syncope provocation by stimulation in anal region
- ✓ ECG channel- asystole 7 sek
- ✓ 24 h Holter EKG proof the asystole


Cardiologic evaluation: O/E normal heart sounds, no HF ECHO- normal

ECG



B.G.

- B.G.
- Holter EKG

- B.G.
- Holter EKG

Crucial for diagnosis is detail personal history

There are only a few tests suitable for autonomic investigation

Regrading to specific symptoms other than orthostatic and HUTT test can be used