Pacing maneuvers in single ventricle patients

Roman Gebauer

HERZZENTRUM LEIPZIG

I.		II.		III.		IV.	
I have received (a) research grant(s) / in kind support		I have been a speaker or participant in accredited CME/CPD		I have been a consultant/strategic advisor etc		I am a holder of (a) patent/shares/ stocks or ownership	
Α		Α		Α		Α	
from current sponsor(s)		from current sponsor(s)		for current sponsor(s)		<u>related</u> to presentation	
YES	NO	YES	NO	YES	NO	YES	NO
	X		X		X		X
В		В		В		В	
from any institution		from any institution		for any institution		<u>not related</u> to presentation	
YES	NO	YES	NO	YES	NO	YES	NO
	X		X		X		X

SCORE: 0

Single ventricle

- heterogenous group of heart defects
- morphology of SV

LEIPZIG

simple recommendation for pacing seems to be not easy!

- variety of conduction sys
- spontaneous/postoperative delay

Cardiac Pacing

\odot

- Appropriate heart rate
- Improvement of hemodynamics
 - ✓ Restoration of AV synchrony
 - ✓ Correction of intraventricular dyssynchrony
- Prevention of arrythmias

$\overline{\mathbf{S}}$

- Pacing induced ventricular dyssynchrony
- Device/lead related complications/ reoperations
 - ✓ Lead fracture
 - ✓ Thrombosis
 - \checkmark Infection
 - ✓ Battery depletion

Temporary pacing

What & how to pace?

Acute Hemodynamic Benefit of Left Ventricular Apex Pacing in Children

Ward Y. Vanagt, MD, Xander A. Verbeek, PhD, Tammo Delhaas, MD, PhD, Marc Gewillig, MD, PhD, Luc Mertens, MD, PhD, Patrick Wouters, MD, PhD, Bart Meyns, MD, PhD, Willem J. Daenen, MD, and Frits W. Prinzen, PhD

HERZZENTRUM LEIPZIG Ann Thorac Surg 2005

entricular and single-site nts with a systemic right

In a population of patients with SenningMustardTGA, acute hemodynamic effects of endocardial systVP and BiVP were significantly and equally better than those of non-systVP (ie, conventional pacing). If, like in patients with normal

Ventricular Resynchronization by Multisite Pacing Improves Myocardial Performance in the Postoperative Single-Ventricle Patient

Emile A. Bacha, MD, Frank J. Zimmerman, MD, Victor Mor-Avi, MD, PhD, Lynn Weinert, BS, Joanne P. Starr, MD, Lissa Sugeng, MD, and Roberto M. Lang, MD

- 26 pts, mean age 28 months (7d-11yrs)
- atrial & 3 ventricular temporary wires
- at postop. day 2 (median), range 0-9d
- baseline QRS 93.9±17.5ms
- real time 3D echocardiography
 - \checkmark 16 segments
 - ✓volume changes in time

Ventricular Resynchronization by Multisite Pacing Improves Myocardial Performance in the Postoperative Single-Ventricle Patient

Emile A. Bacha, MD, Frank J. Zimmerman, MD, Victor Mor-Avi, MD, PhD, Lynn Weinert, BS, Joanne P. Starr, MD, Lissa Sugeng, MD, and Roberto M. Lang, MD

In conclusion, multisite pacing improved cardiac performance after SV palliation. Real-time 3D echocardiography suggests that the mechanism may be caused by improved synchrony of ventricular contraction.

Permanent pacing

What & how to pace?

Pathophysiology of dyssynchronous cardiomyopathy

Regional heterogeneity of function and loading

Structural and cellular remodeling

Dyssynchronous cardiomyopathy

Connexine 43 distribution and conduction velocity in dyssynchronous HF

LEIPZIG

Spragg DD, Kass DA. Prog Cardiovasc Dis. 2006

Cardiac Resynchronization Therapy Corrects Dyssynchrony-Induced Regional Gene Expression Changes on a Genomic Level

Andreas S. Barth, Takeshi Aiba, Victoria Halperin, Deborah DiSilvestre, Khalid Chakir, Carlo Colantuoni, Richard S. Tunin, Victoria Lea Dimaano, Wayne Yu, Theodore P. Abraham, David A. Kass and Gordon F. Tomaselli

HERZZENTRUM

LEIPZIG

Permanent Cardiac Pacing in Children - Choosing the Optimal Pacing Site: A Multi-Center Study

 Cross-sectional study (N=178, 21 centers) CAVB, structurally normal heart ✓ Initially normal LVEF \checkmark Pacing sites (pts) ✓RV RVOT (8), RV lat (44) **Base** RVA (61), RV Septum (29) RV ✓LV Vlat LVA (12), LV lat (17) RVLat \circ LV Base (7) Apex ✓ Pacing duration 5.4 yrs

Permanent Cardiac Pacing in Children - Choosing the Optimal Pacing Site: A Multi-Center Study

Proportion of pts with LVEF<55 %

Circulation 2013;127:613-623

Permanent Cardiac Pacing in Children - Choosing the Optimal Pacing Site: A Multi-Center Study

Prevent conventional pacing associated cardiomyopathy by placement of the ventricular leads on LVA or LVlat wall

Studies on CRT in CHD patients

Author	Year	No. Pts.	CHD %	Systemic RV %	Single Ventricle %	Conv. Pacing %	Non- resp. %
Janoušek et al	2004	8	100	100	0	75	-
Dubin et al	2005	103	70.9	16.5	6.8	44.7	10.7
Khairy et al	2006	13	100	30.8	0	100	11.1
Moak et al	2006	6	33.3	0	0	100	0
Jauvert et al	2009	7	100	100	0	71.4	-
Cecchin et al	2009	60	76.7	15.0	21.7	68.3	10.0
Janoušek et al	2009	109	79.8	33.0	3.7	77.1	13.7
Thambo et al	2013	9	100	0	0	0	-

HERZZENTRUM

LEIPZIG

Adapted from PACES/HRS expert consensus statement on the recognition

and management of arrhythmias in adult CHD; 2014

Single ventricle N=13 pts., pre-CRT paced 8/13

Our approach to this group has evolved our time, but a high importance was placed on obtaining maximal distance between the two leads and aiming for the midventricular regions rather than the base.

70

Cecchin F et al. JCE 2009

Primary bifocal pacing of single ventricle

LEIPZIG

Upgrade of single site pacing of single ventricle

Fusion of spontaneous depolarisation and single site pacing of SV

single site apical pacing of single ventricle

PACES/HRS Expert Consensus Statement on the Recognition and

Management of Arrhythmias in Adult Congenital Heart Disease

CRT INDICATIONS: CLASS I/IIa

COR	LOE	Recommendation
I	В	CRT is indicated in adults with CHD, a systemic LVEF≤35% , sinus rhythm, complete LBBB with a QRS complex ≥150 ms (spontaneous or paced), and NYHA class II to IV symptoms
IIa	B	CRT can be useful for adults with CHD, a systemic LVEF≤35%, sinus rhythm, complete LBBB with a QRS complex 120-149 ms (spontaneous or paced), and NYHA class II to IV symptoms
IIa	С	CRT can be useful for adults with a systemic RVEF≤35%, right ventricular dilation, NYHA class II to IV symptoms, and complete RBBB with a QRS complex ≥150 ms (spontaneous or paced)
IIa	С	CRT can be useful in adults with CHD, a systemic ventricular ejection fraction ≤35% , an intrinsically narrow QRS complex, and NYHA class I to IV symptoms who are undergoing new or replacement device implantation with anticipated requirement for significant (>40%) ventricular pacing .

CRT can be useful for adults with a single ventricle ejection fraction ≤35%, ventricular dilatation, NYHA class II to IV symptoms, and a QRS complex ≥150 ms due to intraventricular conduction delay that produces a complete RBBB or LBBB morphology (spontaneous or paced)

Summary

- "to be paced" can be dangerous
- Look at site with minimal "dyssynchrony potential"
- Use less hardware as you can -> reduce number of complications
- Screen your SV patients with wide QRS and dysfunction of SV for indication to elimination of dyssynchrony

Thank you for attention!

HERZZENTRUM LEIPZIG

HLHS, St.p. BCPA & TVR; 2,5 y/o, RV failure

Materna O et all , Heart Rhythm 2014

Results - Lead placement

Pre-procedural mechanical mapping - 2DS

HERZZENTRUM LEIPZIG

Peri-procedural *electrical* activation mapping

Search for latest local electrical activation during baseline rhythm

Local activation at the site of the systemic ventricular lead

HLHS, St.p. BCPA & TVR; 2,5 y/o, RV failure

