PEDIRHYTHM VII:

Pediatric and Congenital Rhythm Congress

Ahmad S. Amin, M.D., Ph.D. Academic Medical Center, Amsterdam, the Netherlands

LONG QT SYNDROME founder mutations around the world

Recurrent Mutations

- When the same mutation is observed over and over.
 - It is a hot-spot mutation
 - A DNA base pair that is prone to mutation.
 - Carriers are usually not related to one another.

OR

- It is a founder mutation
 - A DNA variation that gets passed down over the generations.
 - The DNA variation can be traced back to one person (the founder).
 - The founder mutation is the genetic legacy of one long-gone ancestor.

Founder Mutation

Founder Mutation

- Embedded in a DNA region (haplotype) identical to that of the founder.
- The same mutation in an identical haplotype the same ancestor.
- Enables tracing the history of human populations and their migrations.

Long QT Syndrome Founder Mutations

Founder mutations around the world

Long QT syndrome type 1 – KCNO1 Country **Mutation** South-Africa A341V Finland G589D IVS7-2A>G Sweden Y111C R518X Norway 572del5 Netherlands Y184S

- Founded around 1700 (10 generations)
- 22 Families Over 180 mutation carriers
- 79% Symptoms (median age 6 years)
- 14% Sudden cardiac death before age of 20 years
- Mean QTc 487 ms (406 tot 676 ms)
- QTc >500 ms associated with cardiac events
- Phenotype modified by autonomic nervous system and common genetic variants in *NOSA1P* and *AKAP9*

Brink, et al. Circulation. 2005. Porta, et al. J Am Coll Cardiol. 2015. Crotti, et al. Circulation. 2009. De Villiers, et al. Circ Cardiovasc Genet. 2014.

Versus other LQTS1 mutations

segments

A341V mutation (South-Africa)

And around the world

Founder mutations (Finland)

The G589D mutation

- Founded 500-750 years ago (25 generations)
- 77 Families Over 500 mutation carriers
- 11% Symptoms
- Mean QTc 460 ms

The IVS7–2A>G mutation

- 16 Families 70 mutation carriers
- 10% Symptoms
- Mean QTc 466 ms

Founder mutations (Finland)

- 182 Founder mutation carriers
- 42 Other *KCNQ1* mutation carriers
- Aged 0 to 18 years
- Follow-up of 12 years
- Less cardiac events in patients with
 - A founder mutation
 - QTc <470 ms
 - β-blocker therapy

Founder mutations (Sweden)

The R518X mutation

- Found around 14th century (28 generations)
- 17 Families 101 carriers
- 15 Homozygous (Jervell & Lange Nielsen syndrome)
 - QTc 576 ms cardiac arrest 47%
- 86 Heterozygous
 - QTc 462 ms cardiac arrest 1%

The Y111C mutation

- Founded around 1600 (22 generations)
- 37 Families 170 carriers
- 30% Symptoms at median age of 11 years
- 1% Cardiac arrest
- QTc 481 ms

Winbo, et al. *BMC Cardiovasc Dis.* 2014. Winbo, et al. Heart Rhythm. 2011. Winbo, et al. Circ Cardiovasc Genet. 2009.

Founder mutations (Sweden)

- 110 fetuses with Y111C or R518X mutation
- 13 Double mutation carriers
- 74 Non-carriers
- Third trimester pre-labor fetal heart rates³
 was correlated with mutation status and postnatal QTc and symptoms.

Founder mutations around the world

Long QT syndrome type 2 –

Founder mutations (Finland)

The R176W mutation

- 16 Families 92 mutation carriers
- 35% Symptoms
- QTc 445 ms

The L552S mutation

- 6 Families 40 mutation carriers
- 2 Homoygzous children: 2:1 AV block (0 years) and TdP (2 years)
- 26% Symptoms (mean age 40 years)
- QTc 466 ms

^DFounder mutations (Finland)

Other LQTS2 53 Founder mutation carriers mutations 0,45 cardiac events 0,40 32 Other KCNH1 mutation carriers 0,35 0,30 Aged 0 to 18 years 5 Cumulative probability 0,25 0,20 Follow-up of 12 years 0,15 LQTS2 0,10 Less cardiac events in patients with founder 0,05-A founder mutation mutations 0.00 By the age of 10 years: 24% vs. 0% 12 15 18 9 Λ Age (years) Patients at Risk By the age of 18 years: 43% s. 4% KCNQ1 FF 136 (0.02) 182 82 (0.08) 42 (0.11) 11 (0.26) 14 (0.04) 31 (0.15) 20 (0.18) KCNQ1 non-FF 42 44 (0.04) 27 (0.04) KCNH2 FF 53 KCNH2 non-FF 32 27 (0.03) 8 (0.43) (0.20)

Koponen, et al. Circ Arrhythm Electrophysiol. 2015.

•

•

•

٠

.

٠

•

٠

F29L mutation (Denmark)

- Founded around 550 years ago 22 genera
- 5 Families 33 mutation carriers
- 73% Symptoms (median age 16 years)
- 9% (3 of 33) Cardiac arrest
- 10 ICD's ICD shocks in 4
- QTc 490 ms

Founder mutations around the world

Long QT syndrome type 3 –

The 1795insD founder mutation

- Founded in the late eighteenth century
- Ten generations
- 378 Family members
- 149 Mutation carriers

The 1795insD founder mutation

Number at risk

Non-carriers

Overlap phenotype

- Bradycardia-dependent QT prolongation .
- Right precordial ST elevation •
- Conduction disease at all levels •

- Mode of (nocturnal) death is not • identified
- Pacemaker therapy proven to be • beneficial.

Conclusion

- Founder mutations around the world may be more common.
- Founder mutations are often less severe mutations (but not always).
- The severity of the mutation depends on gene and its type/location.
- Finding founder mutations may prevent sudden death in family members.
- Local, national and international collaborations are needed to find them.

Example of international collaboration

ORIGINAL ARTICLE

Clinical and Genetic Analysis of Long QT Syndrome in Children from Six Families in Saudi Arabia: Are They Different?

Zahurul A. Bhuiyan · Safar Al-Shahrani · Ayman S. Al-Khadra · Saleh Al-Ghamdi · Khalaf Al-Khalaf · Marcel M. A. M. Mannens · Arthur A. M. Wilde · Tarek S. Momenah

