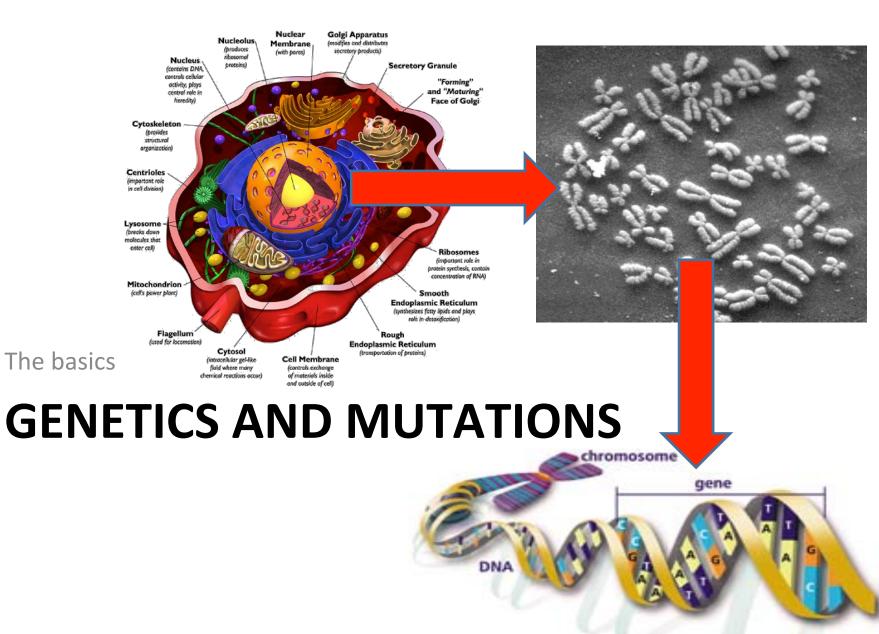
Inherited arrhythmia syndromes I: What you always wanted to know, but were afraid to ask:

THE OWNER WATCHING & CO.

The basics of inherited arrhythmia syndromes and genetics

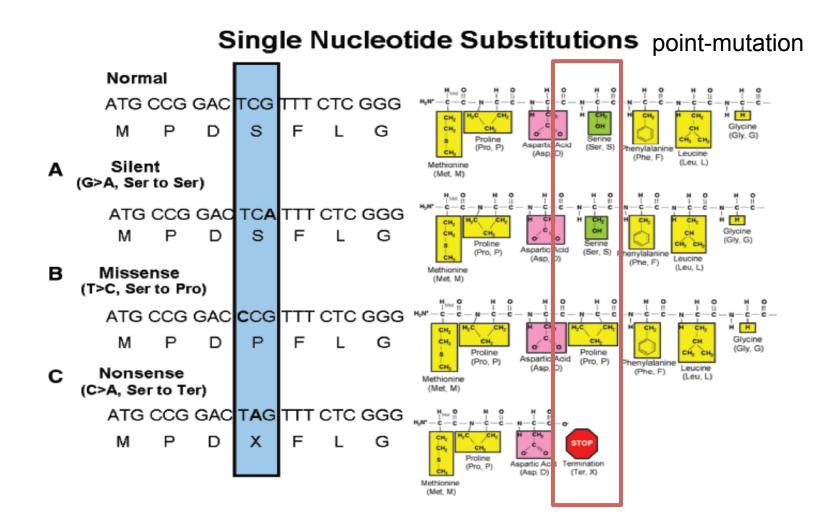
J. Peter van Tintelen MD PhD Clinical Geneticist Amsterdam, the Netherlands

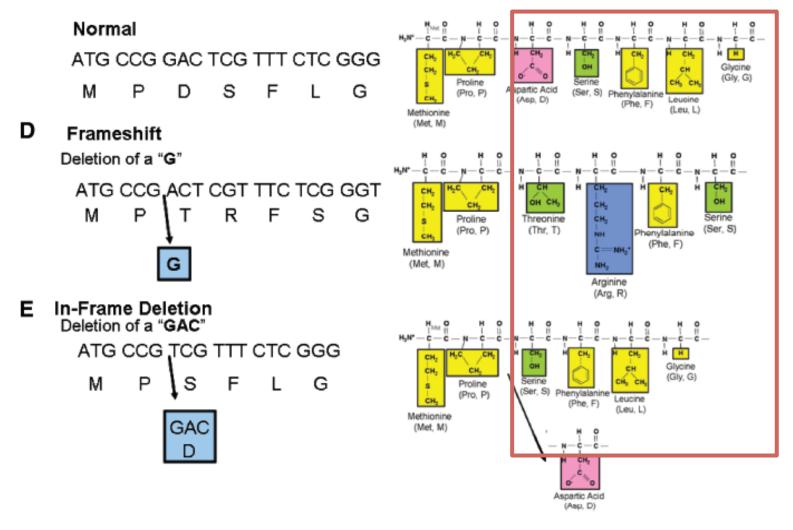
Thessaloniki, Greece feb 4-7 201


Genetics and mutations

Patterns of inheritance and pitfalls

DNA diagnostics


Limitations techniques


Variations in your DNA

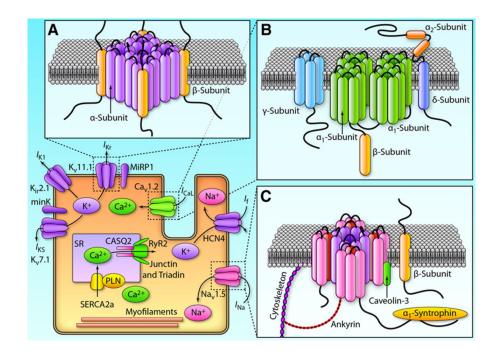
mutation = variation in DNA that affects function

Deletions-insertions

Deletions / Insertions

What determines pathogenicity?

- -Nonsense/ affecting splicing
- -In silico predictions
- -Amino-acid properties
- -Evolutionary conservation
- -Functionally important domain
- -Absence in control group
- -Functional data
- -Co-segregation
- -Described before as.....
- -De novo

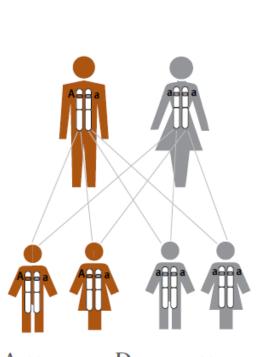


Classification variants

- class 5 pathogenic (>99%)
- class 4 likely pathogenic (95-99%)
- class 3 variant unknown significance (5-95%)
- class 2 unlikely to be pathogenic (1-5%)
- class 1 not pathogenic (<1%)

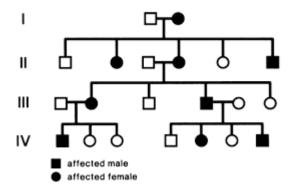
Arrhythmias: channelopathies

- Genes encoding different subunits sodium/potassium/calcium channels
- Associated proteins
- Trafficking proteins

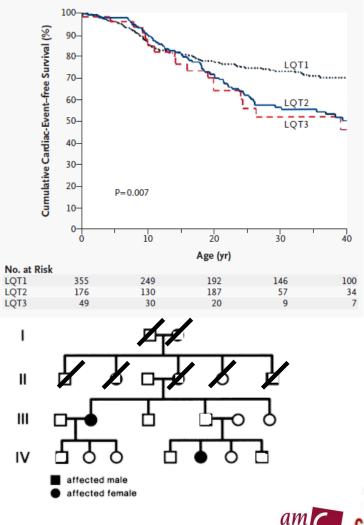


Arrhythmias: channelopathies

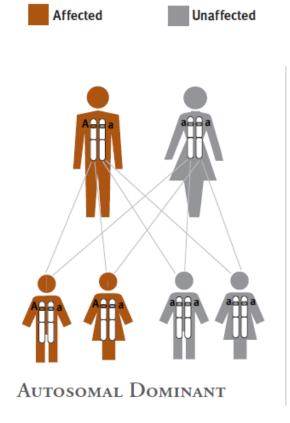
Disease	yield	major genes	Minor genes	elusive
LQTS	80%	KCNQ1, KCNH2, SCN5A, (75%)	KCNE1(<1%), KCNE2(<1), CAV3(<1), SCN4B(0.1), SNTA1(<0.1), AKAP9(<0.1), CACNA2D1(<1), KCNJ5 (<1) , ANK2(<1)	20%
SQTS			KCNQ1, KCNH2, KCNJ2, CACNA1C, CACNB2, CACNA2D1	
Brugada	25%	SCN5A (20-25%)	CACNA1C /A2D1/B2B (10%) SCN1B (1%), SCN3B (1%), GPD1L, (<1) MOG1(<1%), SLMAP, KCNE3 (<1%), KCND3 (<1%), KCNE5, KCNJ8 (<1%) TRPM4 (5)	60-65%
CPVT	50%	RyR2 (50%)	CASQ2, TRDN, CALM1/2, KCNJ2	50%
WPW			LAMP2, PRKAG2, mt	
AF/SSS			SCN5A, HCN4,	
conduction disease			SCN5A, TRPM4	
			am Car	DIOGENETICA

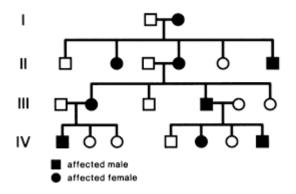

PATTERNS OF INHERITANCE AND PITFALLS

Unaffected

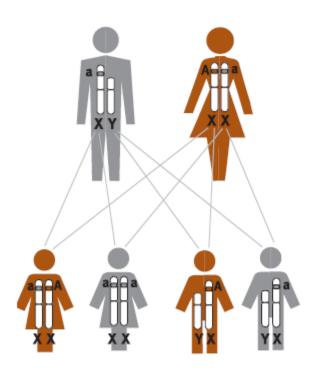

Affected

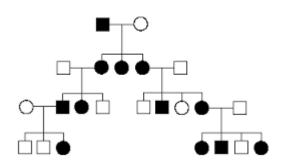
Autosomal Dominant

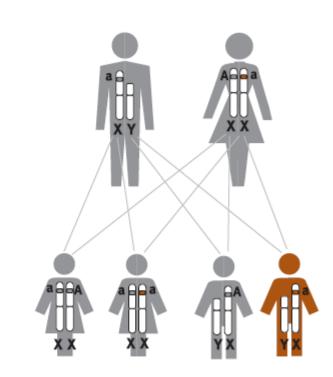


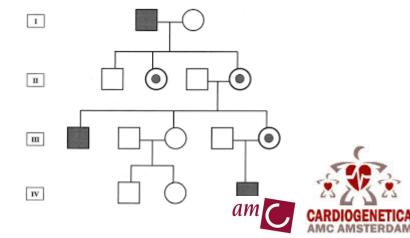

Variable expressivity

Reduced penetrance









X-linked Dominant

X-linked Recessive

DNA DIAGNOSTICS

Why and how?

Why DNA-analysis?

- Confirmation (Dx/pattern of inheritance/PNDx)
- Diagnostic (borderline cases; criteria)
- Facilitates cascade genetic screening
 - early detection
 - dismiss non-carriers from follow-up
- Study genotype-phenotype relations
 - risk stratification?
 - gene (mutation) dependent therapy?

HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies

This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (FHRA)

Michael J. Ackerma
Charles Berul, MD,
A. John Camm, MD,
Robert Hamilton, M
Hervè Le Marec, M[
Chris Semsarian, MI
Arthur Wilde, MD, F

¹From Mayo Clinic, Re York University, New Y National Medical Cent-Institute of Biomedical Baltimore, Maryland, ⁷ Cardiac Arrhythmia Se for Sick Children, Tore Descartes, Paris, Fran-University College Lon of Sydney, Sydney, Aus Hospital, Oxford, Unite

Section # – Disease	Diagnostic	Prognostic	Therapeutic	₽hD,3
Section I – LQTS	+++	+++	++	₹S, CCDS, ⁶
Section II – CPVT	+++	+	-	(5, CCD5,
Section III – BrS	+	+	-	
Section IV – CCD	+	+	+	
Section V – SQTS	+/-	-	-	
Section VI - AF				4
Section VII – HCM	+++	++	+	
Section VIII – ACM/ARVC	+	+/-	-	
Section IX – DCM	+/-	-	-	avia. Italy an
Section IX – DCM + CCD	++	++	+	any, ⁴ Childre
Section X – LVNC	+	-	-	- umbia, ⁵ Giro
Section XI – RCM	+	+	+	bus Hankins

Figure 1 Impact of genetic testing for the index case. The relative strength (- = negligible to +++ = strong) regarding the contribution/ impact of the genetic test result for the index case for each disease in each of the three categories (diagnostic, prognostic, and therapeutic) was voted upon by each writing member and >90% consensus was achieved for each "cell." The level of evidence for each cell's designation is the same as for the entire document, Level of Evidence C.

avia, Italy and New any, ⁴Children's ambia, ⁵Girona ans Hopkins University, ts General Hospital, Canada, ¹⁰Hospital ada, ¹²Université Paris ovascular Science, Germany, ¹⁶University aford, John Radcliffe lam, The Netherlands,

²⁰Ludwigsburg Clinic, Ludwigsburg, Germany, and ²¹Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana.

How? Genetic analysis in cardiac disease

- <1995: nothing
- 1995-2012: 1-2 <u>genes</u> at a time; sequentially. Max ca. 6 genes
- since 2012: <u>panels</u> 23-100+ genes
 (cardiomyopathy/ arrhythmia/ aorta/ combinations)
- >2015 <u>Exome sequencing</u> ±20.000 genes/ 2%DNA
- >2017? Genome sequencing

Exome sequencing: all genes; 2% of DNA

The current role of Next generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions

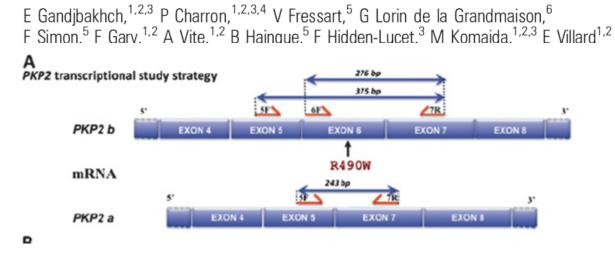
A viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics

 Whole exome/genome sequencing is considered to be a diagnostic method in development and should be used for genetic diagnosis only if filtered against recognised disease genes. The coverage should allow identification of all exomic variants in these genes

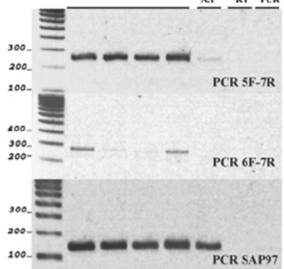
Unsolicited findings:

- Before genetic testing it is important to inform the patient about the challenges in interpretation of sequencing results of multiple genes and discuss the implications of unsolicited findings
- In a clinical diagnostic setting only recognised disease genes should be investigated in patients fulfilling diagnostic criteria of a specific cardiovascular condition

NOT EVERY GENE IS RELEVANT (YET) NOT EVERY PUBLISHED VARIANT IS DISEASE CAUSING


Genetics and inherited arrhythmias

ANY CAVEATS?



Interpretation Genetic Data

Plakophilin 2A is the dominant isoform in human heart tissue: consequences for the genetic screening of arrhythmogenic right ventricular cardiomyopathy

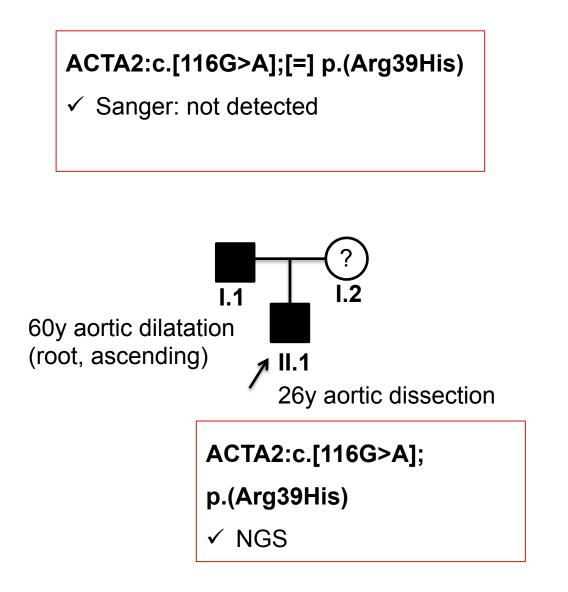
PKP2 transcriptional analysis in human heart tissues
Controls
Proband Blank Blank
A.1
RT
PCR

Heart 2011; 97:844-9

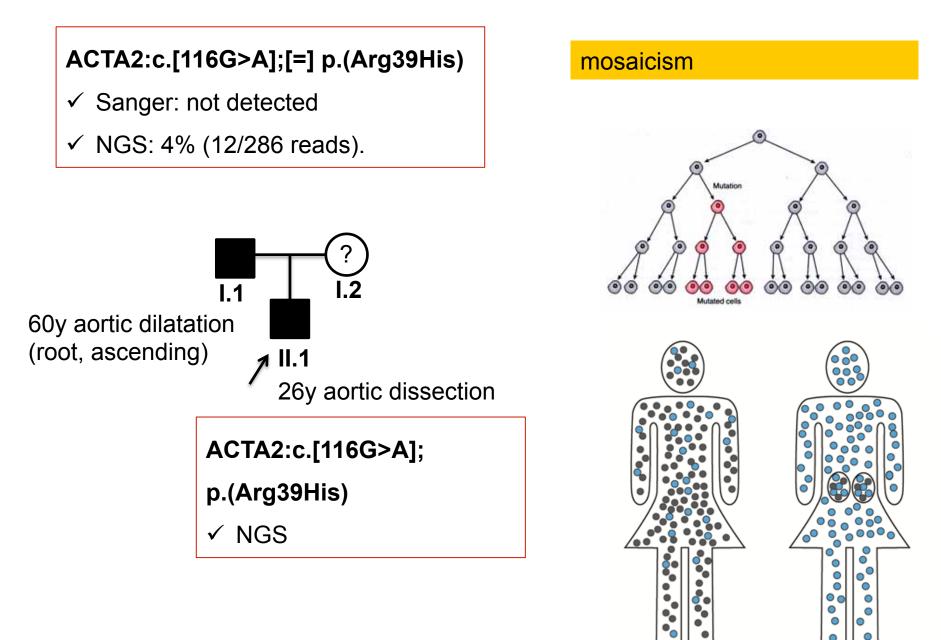
<u>Gene</u>	Locus	<u>Exon</u>	Mutation	DNA Change	Protein Change	<u>Type</u>	Reported Classification	No of clinical reports	Details
1 N 4	12011	J	040013/1404	0.107011028	раночотоснолч	oplice site	raciogenie	-	onow been
PKP2	12p11	6	Intronic	c.1379-22G>A	-	Intronic	No known pathogenicity	1	Show Detai
PKP2	12p11	6	Splice	c.1379-1G>A	r.spl?	Splice site	Pathogenic	1	Show Detai
PKP2	12p11	6	G489R	c.1465G>A	p.Gly489Arg	Missense	Pathogenic	2	Show Detai
PKP2	12p11	6	R490W	c.1468C>T	p.Arg490Trp	Missense	Unknown/dW	3	Show Detai
PKP2	12p11	6	Splice	c.1510+5G>A	r.spl?	Splice site	Pathogenic	0	Show Detai
PKP2	12p11	6	Intronic	c.1510+78G>A	-	Intronic	No known pathogenicity	1	Show Detai

PITTFALLS DIFFERENT TECHNIQUES

Older techniques (false negatives)

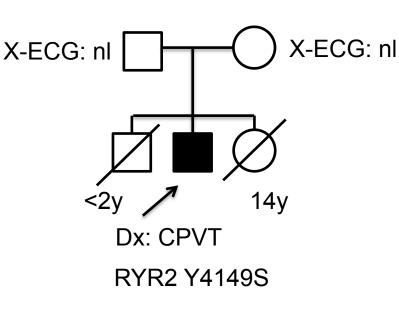

- Older techniques: (dHPLC), misses mutations
- Sanger sequencing:
 - misses large deletions/duplications

(add MLPA)


Mosaicism missed

• Panels based upon WES: coverage

Germline mosaicism


Constitutional mosaicism

Comprehensive Open Reading Frame Mutational Analysis of the *RYR2*-Encoded Ryanodine Receptor/Calcium Channel in Patients Diagnosed Previously with Either Catecholaminergic Polymorphic Ventricular Tachycardia or Genotype Negative, Exercise-Induced Long QT Syndrome

Argelia Medeiros-Domingo, MD, PhD^{*,1}, Zahurul A. Bhuiyan, MD, PhD^{*,2}, David J. Tester, BS¹, Nynke Hofman, MSc², Hennie Bikker, PhD², J Peter van Tintelen, MD, PhD³, Marcel M.A.M Mannens, PhD², Arthur A.M. Wilde, MD, PhD^{2,4}, and Michael J. Ackerman, MD, PhD^{1,5,6}

RyR2: Y4149S

25% hair roots 20% leucocytes 15% buccal cells & skin

Recurrence risk in de novo mutations: 1-2% !

cardiogenetics: threshold-model:

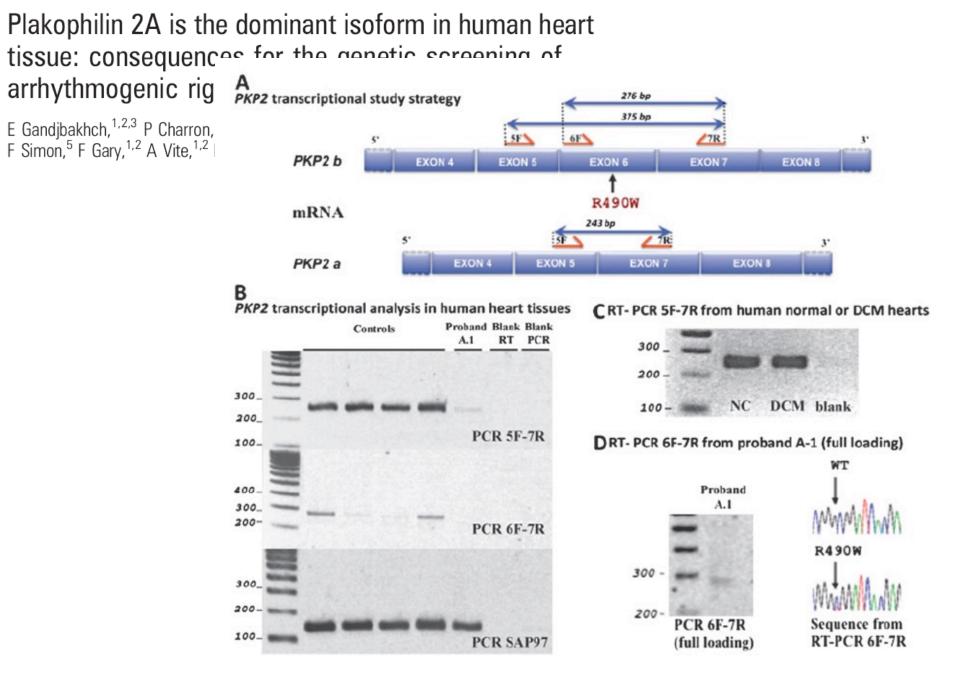
Thresholdmodel

gender +/- multiple gener -/ Continence and Arrhythmic Risk in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Associated Desmosomal Mutation Carriers

Cynthia A. James, ScM, PhD, Aditya Bhonsale, MD, Crystal Tichnell, MGC, Brittney Murray, MS, Stuart D. Russell, MD, Harikrishna Tandri, MD, Ryan J. Tedford, MD, Daniel P. Judge, MD, and Hugh Calkins, MD

Disease Mutation 2 Mutation 1 Healthy Mutation 1 Mutation 1 Mutation 1 individuals 2 3 1 4 5 mutation 1 male gender mutation 2 exogeneous

SUMMARY


- Dominant: reduced penetrance/variability
- Genetics Dx mainly for family cascade-screening (counseling)
- Careful in interpreting genetic test results: dynamic new genes; published "mutations" (false +)
- Causal mutations can be missed (technique, mosaicism, deletions) (false -)
- Genetics points the gun, additional factors pull the trigger (threshold-model)

Experimental Evidence Scoring

Evidence Category	Evidence Type	Score Range	Recommended points/ evidence	Points Given	Max Score	
	Biochemical Function	1/2 - 2	1/2 point for each	1.5	2	
Function	Protein Interaction	¹ / ₂ - 2	piece of evidence in any			
	Expression	1/2 - 2	category			
Functional Alteration	Patient cells	1 - 2	1 point	1	2	
	Non-patient cells	¹ / ₂ - 1	1∕₂ point	NA		
	Animal model	1 - 4	2 points	NA	4	
Models &	Cell culture model system	1/2 - 2	1 point	NA		
Rescue	Rescue in animal model	1 - 4	2 points	NA		
	Rescue in engineered equivalent	1⁄2 - 2	1 point	NA		
			Total Final Score	2.5	0 - 8	

Assertion criteria	Genetic Evidence (0-12 points)	Experimental Evidence (0-6 points)	Total Points (0-18)	Replication Over Time (Y/N)	
Description	Case-level, family segregation, or case- control data that support the gene- disease association	Gene-level experimental evidence that support the gene- disease association	Sum of Genetic & Experimental Evidence	> 2 pubs w/ convincing evidence over time (>3 yrs)	
Assigned Points 9.75		2.5	12.25	Y	
		LIMITED	1-6		
		MODERATE	7-11		
CALCU		STRONG	12-18		
CLASSIFI	CATION	DEFINITIVE	12-18 AND replication over time		
Valid contradictory evidence? (Y/N)	List PMIDs and describe	e evidence:			
CUF	RATOR CLASSIFICATION	I STRONG???			
	FINAL CLASSIFICATION				

Plakophilin-2 c.419C > T and risk of heart failure and arrhythmias in the general population

Alex Hørby Christensen¹, Pia Rørbœk Kamstrup², Estelle Gandjbakhch³, Marianne Benn⁴, Jan Skov Jensen⁵, Henning Bundgaard⁶, Eric Villard³ and Anne Tybjærg-Hansen^{*,7,8}

European Journal of Human Genetics (2016) 24, 732–738

- Multiple lines of evidence:
 - ->10000 Controls 0.94%
 - No association with electro/echographic parameters
 - In vitro studies

ARTICLE RESPONSE

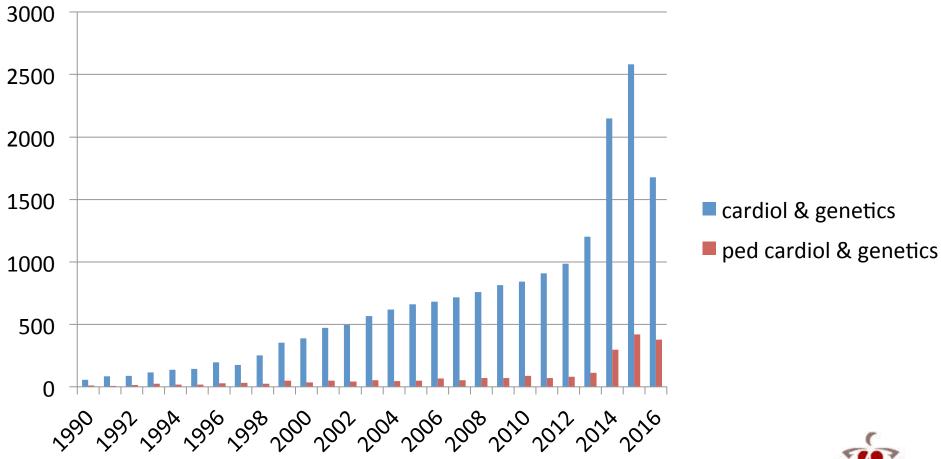
Nature Clinical Practice Cardiovascular Medicine (2008) 5, E1 doi:10.1038/ncpcardio1434

Variations in DSG2: V56M, V158G and V920G are not pathogenic for arrhythmogenic right ventricular dysplasia/cardiomyopathy

Maximilian G Posch*, Matthias J Poscl The p.A897KfsX4 frameshift variation in Cemil Özcelik desmocollin-2 is not a causative mutation in arrhythmogenic right ventricular cardiomyopathy

Marzia De Bortoli¹, Giorgia Beffagna¹, Barbara Bauce², Alessandra Lorenzon¹, Gessica Smaniotto¹, Ilaria Rigato², Martina Calore¹, Ilena EA Li Mura¹, Cristina Basso³, Gaetano Thiene³, Gerolamo Lanfranchi^{1,4} Gian Antonio Danieli¹, Andrea Nava² and Alessandra Rampazzo^{*,1}

Conclusion: genetics ACM


- Left-right-biventricular
- mainly desmosome related: mutations: ~50% (90% fam)
- Genotype-phenotype relationships:

"double mutations" (screen all genes); DSP, PLN, TMEM43: LV involvement

- Careful in interpreting genetic test results: dynamic
- New monogenic-genes claims: be aware
- Highly penetrant dominant mutations rare; majority of mutations are RISK factors (threshold model)
- Counsel genotype, treat phenotype (limited role for genotyping in prediction of outcome; genotyping for cascade screening)

VUmc (1)

Pubmed: nº publications -pediatric- cardiology & genetics

