Pediatric and Congenital Rhythm Congress VII

4 – 7 February 2017 Thessaloniki/GREECE

The Genetics of Brugada syndrome

Arthur A.M. Wilde

Brugada syndrome

The diagnosis

Male 39 years (resuscitated)

Brugada syndrome

Genetics

Genetically heterogeneous

BrS a monogenetic disorder?

SCN5A (3p21) mutations

28/130 (22%) : Priori et al., 2002 (mostly Italian)

23/77 (30%) : Smits et al., 2002 (NL, Fr, GER)

3/10 (30%) : Vatta et al., 2002 (Japan, Thailand)

4/39 (10%) : Makiyama ea., 2005 (Japan)

SCN5A: cardiac sodium channel mutations

SCN5A: cardiac sodium channel mutations

PEDIATRICS[®]

Fever-Induced Life-Threatening Arrhythmias in Children Harboring an *SCN5A* Mutation

AUTHORS: Priya Chockalingam, MBBS,^a Lukas A. Rammeloo, MD,^b Pieter G. Postema, MD,^a Jarda Hruda, MD,^b Sally-Ann B. Clur, MD,^c Nico A. Blom, MD, PhD^c and Arthur A. Wilde, MD, PhD^a

^aDepartment of Cardiology, Heart Failure Research Centre, and ^cDepartment of Pediatric Cardiology, Academic Medical Centre, Amsterdam, Netherlands; and ^bDepartment of Pediatric Cardiology, VU University Medical Centre, Amsterdam, Netherlands

KEY WORDS

arrhythmia, children, childhood immunization, fever, SCN5A sodium-channel mutation

ABBREVIATIONS

BrS—Brugada syndrome bpm—beats per minute ECG—electrocardiogram VT—ventricular tachycardia

www.pediatrics.org/cgi/doi/10.1542/peds.2010-1688

abstract

Cardiac channelopathies caused by *SCN5A* mutation are well tolerated by most patients. However, the dramatic presentation of a previously healthy 4-month-old girl with life-threatening arrhythmias and the subsequent findings in the child and her family provide evidence that loss-of-function sodium-channel mutations can present very early in life. An *SCN5A* mutation was detected in the infant, her brother, and their father. Both the siblings manifested recurrent serious arrhythmias during febrile episodes, which followed immunization, as well as fever of nonspecific origin. Management consisted of prompt antipyretic measures, hospitalization with vigorous monitoring during immunization and febrile episodes, and prevention of tachycardia-induced conduction disturbance with β -blockers. *Pediatrics* 2011;127:e000

	Locus	Ion channel	Gene/Protein
BrS 1	3p21	I _{Na}	SCN5A, Na _v 1.5
BrS 2	3p24	I _{Na}	GPD1L
BrS 3	12p13.3	I _{Ca}	CACNA1C, Ca _v 1.2
BrS 4	10p12.33	I _{Ca}	CACNB2b, Ca _v b2b
BrS 5	19q13.1	I _{Na}	SCN1B, Na _v β1
BrS 6	11q13-q14	I _{to}	KCNE3, MiRP2
BrS 7	11q23.3	I _{Na}	SCN3B, Na _v β3
BrS 8	12p11.23	I _{K.ATP}	KCNJ8
BrS 9	7q21-q22	I _{Ca}	CACNA2D1, Cavα2δ
BrS 10	1p13.3	I _{to}	KCND3
BrS 11	17p13.1	I _{Na}	MOG1
BrS 12	3p21.2-p14.3	I _{Na}	SLMAP
BrS 13	12p12.1	I _{K.ATP}	ABCC9, SUR2A
BrS 14	11q23	I _{Na}	SCN2B

	Locus	Ion channel	Gene/Protein
BrS 15	12p11	I _{Na}	PKP2
BrS 16	3q28	I _{Na}	FGF12
BrS 17	3q22.2	I _{Na}	SCN10A
BrS 18	7p12.1	I _{TO}	SEMA3A

	Locus	Ion channel	Gene/Protein
BrS modifying	15q24-25	I _F 🔶	HCN4
BrS modifying	7q35	I _{Kr}	KCNH2
BrS modifying	Xq22.3	I _{to}	KCNE5
BrS modifying	6q22	I _{Na}	HEY2

ICU ation American Heart Association **Cardiovascular Genetics**

Learn and Live

JOURNAL OF THE AMERICAN HEART ASSOCIATION

SCN5A Mutations and the Role of Genetic Background in the Pathophysiology of Brugada Syndrome

Vincent Probst, Arthur A.M. Wilde, Julien Barc, Frederic Sacher, Dominique Babuty, Philippe Mabo, Jacques Mansourati, Solena Le Scouarnec, Florence Kyndt, Cedric Le Caignee, Pascale Guicheney, Laetitia Gouas, Juliette Albuisson, Paola G. Meregalli, Hervé Le Marec, Hanno L. Tan and Jean-Jacques Schott Circ Cardiovasc Genet 2009;2;552-557; originally published online Sep 29, 2009; DOI: 10.1161/CIRCGENETICS.109.853374

n= 13 probands, 263 family members

am

Does SCN5a play a role?:

- there are no linkage data for SCN5a!
- Ioss-of-function mutation not mandatory!
- could it be an important modifier?
- if this would have been the first family then...

Brugada syndrome Genotype-phenotype relation

Type of *SCN5A* mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies

Paola G. Meregalli, MD,* Hanno L. Tan, MD, PhD,*[†] Vincent Probst, MD, PhD,^{‡§||¶} Tamara T. Koopmann, PhD,[†] Michael W. Tanck, PhD,[#] Zahurul A. Bhuiyan, MD, PhD,** Frederic Sacher, MD,^{††} Florence Kyndt, PharmD, PhD,^{‡§¶‡‡} Jean-Jacques Schott, PhD,^{‡§||¶} J. Albuisson, MD,^{द‡‡} Philippe Mabo, MD,^{§§} Connie R. Bezzina, PhD,^{†**} Herve Le Marec, MD, PhD,^{‡§||¶} Arthur A. M. Wilde, MD, PhD*

From the *Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands; [†]Heart Failure Research Centre, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands; [‡]INSERM, UMR915, l'institut du thorax, Nantes, F-44000 France; [§]CNRS, ERL3147, Nantes, F-44000 France; ^{II}CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, F-44000 France; [¶]Université de Nantes, Nantes, F-44000 France; [#]Department of Clinical Epidemiology Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands; ^{**}Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands, ^{††}CHU de Bordeaux, University of Bordeaux, France; ^{‡‡}CHU Nantes, Service de Génétique Médicale, Nantes, F-44000 France; ^{§§}Service de Cardiologie, CHU de Rennes, France.

*: Meregalli et al. Heart Rhythm 6, 341-348 , 2009

Brugada syndrome Genotype-phenotype relation

With more severe Na-channel

there are more symptoms

wider PR-interval

Wider PR and QRS after class 1a

Human Molecular Genetics, 2015, Vol. 24, No. 10 2757–2763

doi: 10.1093/hmg/ddv036 Advance Access Publication Date: 3 February 2015 Original Article

ORIGINAL ARTICLE

Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome

Solena Le Scouarnec^{1,2,3,†}, Matilde Karakachoff^{1,2,3,4,†}, Jean-Baptiste Gourraud^{1,2,3,5,†}, Pierre Lindenbaum^{1,2,3,5}, Stéphanie Bonnaud^{1,2,3,5}, Vincent Portero^{1,2,3}, Laëtitia Duboscq-Bidot^{1,2,3}, Xavier Daumy^{1,2,3}, Floriane Simonet^{1,2,3}, Raluca Teusan^{1,2,3}, Estelle Baron^{1,2,3}, Jade Violleau^{1,2,3,5}, Elodie Persyn^{1,2,3}, Lise Bellanger^{3,6}, Julien Barc^{7,8}, Stéphanie Chatel^{1,2,3,5}, Raphaël Martins⁹, Philippe Mabo⁹, Frédéric Sacher¹⁰, Michel Haïssaguerre¹⁰, Florence Kyndt^{1,2,3,5}, Sébastien Schmitt^{3,11}, Stéphane Bézieau^{3,11}, Hervé Le Marec^{1,2,3,5}, Christian Dina^{1,2,3,5}, Jean-Jacques Schott^{1,2,3,5}, Vincent Probst^{1,2,3,5} and Richard Redon^{1,2,3,5,*}

Gene	BrS cases (n = 167)	Internal controls (n = 167)	P-value 1	UK10K controls (<i>n</i> = 881)	P-value 2
BrS-susceptibilit	y genes				
SCN5A	20.4% (34)	2.4% (4)	1.4×10^{-7a}	2.4% (21)	1.7×10^{-15a}
SCN10A	6% (10)	2.4% (4)	0.170	3.5% (31)	0.131
CACNA1C	3% (5)	6.6% (11)	0.199	2% (18)	0.395
PKP2	3% (5)	2.4% (4)	1	1.7% (15)	0.348
CACNB2	1.8% (3)	1.2% (2)	1	0.9% (8)	0.396
KCNH2	1.2% (2)	3.6% (6)	0.283	1.6% (14)	1
TRPM4	1.2% (2)	3% (5)	0.448	1.9% (17)	0.754
KCND3	0.6% (1)	1.2% (2)	1	1.6% (14)	0.488
CACNA2D1	0.6% (1)	0.6% (1)	1	3.3% (29)	0.072
HEY2	0.6% (1)	0.6% (1)	1	0.1% (1)	0.293
SCN2B	0.6% (1)	0.6% (1)	1	0.5% (4)	0.581
SCN3B	0.6% (1)	0.6% (1)	1	0.5% (4)	0.581
ABCC9	_	3% (5)	0.061	1.1% (10)	0.379
SCN1B	_	1.8% (3)	0.248	0.3% (3)	1
RANGRF	—	0.6% (1)	1	0.2% (2)	1
FGF12	_	—	_	0.7% (6)	0.597
GPD1L	_	_	_	0.1% (1)	1
HCN4	_	—	_	1.6% (14)	0.144
KCNE1L	_	—	_	1% (9)	0.369
KCNE3	_	_	_	0.1% (1)	1
KCNJ8	—	—	_	0.5% (4)	1

Table 1 Burden tests results for 45 genes linked to cardiac arrhythmias

Gene	BrS cases (n = 167)	Internal controls (n = 167)	P-value 1	UK10K controls (<i>n</i> = 881)	P-value 2
BrS-susceptibility	y genes				
SCN5A	20.4% (34)	2.4% (4)	1.4×10^{-7a}	2.4% (21)	1.7×10^{-15a}
SCN10A	6% (10)	2.4% (4)	0.170	3.5% (31)	0.131
CACNA1C	3% (5)	6.6% (11)	0.199	2% (18)	0.395
PKP2	3% (5)	2.4% (4)	1	1.7% (15)	0.348
CACNB2	1.8% (3)	1.2% (2)	1	0.9% (8)	0.396
KCNH2	1.2% (2)	3.6% (6)	0.283	1.6% (14)	1
TRPM4	1.2% (2)	3% (5)	0.448	1.9% (17)	0.754
KCND3	0.6% (1)	1.2% (2)	1	1.6% (14)	0.488
CACNA2D1	0.6% (1)	0.6% (1)	1	3.3% (29)	0.072
HEY2	0.6% (1)	0.6% (1)	1	0.1% (1)	0.293
SCN2B	0.6% (1)	0.6% (1)	1	0.5% (4)	0.581
SCN3B	0.6% (1)	0.6% (1)	1	0.5% (4)	0.581
ABCC9	—	3% (5)	0.061	1.1% (10)	0.379
SCN1B	—	1.8% (3)	0.248	0.3% (3)	1
RANGRF	—	0.6% (1)	1	0.2% (2)	1
FGF12	—	_	—	0.7% (6)	0.597
GPD1L	—	_	—	0.1% (1)	1
HCN4	—	—	_	1.6% (14)	0.144
KCNE1L	—	_	—	1% <mark>(</mark> 9)	0.369
KCNE3	—	_	_	0.1% (1)	1
KCNJ8	_	_	—	0.5% (4)	1

Table 1 Burden tests results for 45 genes linked to cardiac arrhythmias

More complex genetic architecture?

Genetics of Brugada Syndrome: new strategy Genome Wide Association Study

N=312 Type-I BrS index cases

Brugada Syndrome patients ascertained at 13 clinical centers in Europe, U.S., Japan

Clinical Centre	п	Males	Age at diagnosis	Baseline BrS ECG	Symptoms ⁽¹⁾	SCN5A carriers
Nantes (FR)	422	323 (77%)	48 (+/-13)	295 (46%)	153 (36%)	71 (17%)
Pavia (IT)	126	105 (83%)	42 (+/-14)	46 (37%)	16 (13%)	20 (16%)
Amsterdam (NL)	101	84 (83%)	48 (+/-13)	46 (46%)	52 (51%)	23 (23%)
Paris (FR)	93	84 (90%)	44 (+/-13)	56 (60%)	28 (30%)	15 (16%)
Utica (US)	74	49 (66%)	42 (+/-17)	24 (32%)	41 (55%)	10 (14%)
Other Centers ⁽²⁾	90	71 (79%)	44 (+/-14)	47 (52%)	42 (47%)	21 (23%)
Japan ⁽³⁾	208	190 (91%)	46 (+/-15)	95 (46%)	84 (40%)	29 (14%)

⁽¹⁾ Ventricular tachycardia, ventricular fibrillation, syncope and near syncope

⁽²⁾ Munster (DE), London (UK), Copenhagen (DK), Munich (DE), Nashville (US)

⁽³⁾ Osaka, Nagasaki, Shiga

Genome Wide Association Study in Brugada Syndrome 'GWAS #1'

Bezzina et al., Nat Genet 2013

Cumulative effect of alleles at the three loci on susceptibility to BrS

Cumulative effect of alleles at the three loci on susceptibility to BrS

MUTATION

MUTATION SNP 1

MUTATION SNP 1

■ MUTATION ■ SNP 1 ■ SNP 2

Heart Failure Reseterent Centre

■ MUTATION ■ SNP 1 ■ SNP 2 ■ SNP 3

■ MUTATION ■ SNP 1 ■ SNP 2 ■ SNP 3

Conclusions:

- Genetically heterogeneous
- ♥ SCN5a 15-30% of patients
- Iikely oligogenetic
- no major impact on prognosis

Cumulative risk for Brugada Syndrome ECG

More complex genetic architecture?

Conclusions

- **V** Brugada syndrome is an oligogenetic dis.
- **V** SCN5a is the most important gene
- **V** In children most often conduction disease
- **Genetic Risk Sc. relates to the phenotype**
- **GRS** cannot be used as riskfactor (yet)

Conclusions & consequences

- **V** If anything only 'act' on SCN5a mutations
- Also investigate gene negative individuals in SCN5a positive families

Y. Mizusawa **D.** Milosavljevic **R.** Tadros C.A. Remme A.O. Verkerk V.M. Christoffels H.L. Tan C.R.Bezzina

Acknowledgments

BrugadaSyndrome cases:

C. Giustetto, IT P.J. Schwartz, IT S.G. Priori, IT M. Haissaguerre, FR P. Mabo, FR D. Babuty, FR J. Mansourati, FR P. Guicheney, FR A. Leenhardt, FR E. Behr, UK P. Lambiase, UK E. Arbelo, ES G. Sarquella-Brugada, ES R. Brugada, ES

E. Schulze-Bahr, DE J. Tfelt-Hansen, DK M. Horie, JP N. Makita, JP W. Shimizu, JP

P.A. Volders, NL

M.P. Van den Berg, NL

J. Saenen, BE

T. Robyns, BE

C. Antzelevitch, USA

D. Roden, USA

M. Borggrefe, DE

S. Kaab, DE

J. Barc F. Simonet J.-B. Gourraud H. Le Marec Vincent Probst C. Dina J.-J. Schott R. Redon

GoNL, KORA, UK10K, D.E.S.I.R., PREGO consortia, EU

Controls:

Heart Centre

FONDATION

Thank you